Для обучения новой версии поиска используются поисковая статистика и оценки миллионов людей. Таким образом, вклад в развитие поиска вносят не только разработчики, но и все пользователи Яндекса.
Как сообщает пресс-служба Яндекса, в какой-то момент факторов ранжирования — признаков, по которым можно определить, насколько хорошо страница отвечает на запрос, — набралось так много, что стало ясно: прописать их все в виде инструкций невозможно. Лучше научить машину самостоятельно принимать решения: какие признаки использовать и как их комбинировать.
Поисковый алгоритм «Королёв» сравнивает семантические векторы поисковых запросов и веб-страниц целиком — а не только их заголовков. Это позволяет выйти на новый уровень понимания смысла.
«Представьте, что вы впервые услышали о романе Льва Толстого «Война и мир». Безусловно, вы сможете извлечь смысл из названия — например предположить, что в книге много батальных сцен. Но чтобы узнать все хитросплетения сюжета и давать исчерпывающие ответы на вопросы о романе, вам потребуется прочитать его полностью», сообщается в пресс-релизе Яндекса.
В «Королеве» тексты веб-страниц в семантические векторы преобразует нейросеть. Эта операция требует много вычислительных ресурсов. Сравните: на то, чтобы прочитать название книги, у вас уйдут считанные секунды, но на то, чтобы прочитать её всю от корки до корки, потребуются часы, дни или даже недели.
Поэтому «Королёв» высчитывает векторы страниц не в режиме реального времени, а заранее, на этапе индексирования. Когда человек задаёт запрос, алгоритм сравнивает вектор запроса с уже известными ему векторами страниц.
Нейронная сеть, которую использует алгоритм «Королёв», обучается на обезличенной поисковой статистике.
Системы сбора статистики учитывают, на какие страницы пользователи переходят по тем или иным запросам и сколько времени они там проводят. Если человек открыл веб-страницу и «завис» там надолго, вероятно, он нашёл то, что искал, — то есть страница хорошо отвечает на его запрос. Это положительный пример. Подобрать отрицательные примеры гораздо легче: достаточно взять запрос и любую случайную веб-страницу.
Как сообщает пресс-служба Яндекса, в какой-то момент факторов ранжирования — признаков, по которым можно определить, насколько хорошо страница отвечает на запрос, — набралось так много, что стало ясно: прописать их все в виде инструкций невозможно. Лучше научить машину самостоятельно принимать решения: какие признаки использовать и как их комбинировать.
Поисковый алгоритм «Королёв» сравнивает семантические векторы поисковых запросов и веб-страниц целиком — а не только их заголовков. Это позволяет выйти на новый уровень понимания смысла.
«Представьте, что вы впервые услышали о романе Льва Толстого «Война и мир». Безусловно, вы сможете извлечь смысл из названия — например предположить, что в книге много батальных сцен. Но чтобы узнать все хитросплетения сюжета и давать исчерпывающие ответы на вопросы о романе, вам потребуется прочитать его полностью», сообщается в пресс-релизе Яндекса.
В «Королеве» тексты веб-страниц в семантические векторы преобразует нейросеть. Эта операция требует много вычислительных ресурсов. Сравните: на то, чтобы прочитать название книги, у вас уйдут считанные секунды, но на то, чтобы прочитать её всю от корки до корки, потребуются часы, дни или даже недели.
Поэтому «Королёв» высчитывает векторы страниц не в режиме реального времени, а заранее, на этапе индексирования. Когда человек задаёт запрос, алгоритм сравнивает вектор запроса с уже известными ему векторами страниц.
Нейронная сеть, которую использует алгоритм «Королёв», обучается на обезличенной поисковой статистике.
Системы сбора статистики учитывают, на какие страницы пользователи переходят по тем или иным запросам и сколько времени они там проводят. Если человек открыл веб-страницу и «завис» там надолго, вероятно, он нашёл то, что искал, — то есть страница хорошо отвечает на его запрос. Это положительный пример. Подобрать отрицательные примеры гораздо легче: достаточно взять запрос и любую случайную веб-страницу.